KOSBKEED

Enabling marker-assisted breeding in Rosaceae

Delicious

118 126 216 226

RosBREED Enables Marker-Assisted Breeding for Apple

Cameron Peace¹, James Luby², Kate Evans³, Susan Brown⁴, Matthew Clark², Yingzhu Guan³, Benjamin Orcheski⁴, Cari Schmitz², Sujeet Verma¹, Nahla Bassil⁵, Eric van de Weg⁶, and Amy lezzoni⁷

¹Washington State University, Pullman, WA 99164, USA ²Univ. of Minnesota, St. Paul, MN 55108, USA ³Washington State University, Wenatchee, WA 98801, USA

⁴Cornell University, NYSAES, Geneva, NY 14456, USA ⁵USDA-ARS National Clonal Germplasm Repository, Corvallis, OR 97333, USA ⁶Plant Research International, 6700AA, Wageningen, Netherlands ⁷Michigan State University, East Lansing, MI 48824, USA

The RosBREED project and apple genetic improvement

U.S. apple breeders primarily target consumer-preferred traits of excellent texture, flavor, and appearance. The ability to retain superior fruit quality after storage is a particular focus so that a year-round domestic supply of nutritious apples is available to the public. Also considered are traits valued by industry sectors, especially suitability to local production environments. DNA information, if gathered, validated, deployed, and routinely used in breeding decision-making, offers the opportunity for apple genetic improvement to become more efficient and precise in delivering long-term solutions to industry challenges and consumer demands. The multi-institutional RosBREED project (www.rosbreed.org) is enabling such marker-assisted breeding (MAB) for apple.

Performance evaluation

Germplasm

 Standardized phenotyping protocols for fruit quality evaluation (www.rosbreed.org/resources/fruitevaluation) were collaboratively developed. • Performance evaluation at multiple, nation-wide breeding locations was conducted since 2010 for many fruit quality and productivity traits. • Access data at: <u>www.rosaceae.org/breeders_toolbox</u>

Genetic tests for breeding

• RosBREED **"MAB** 8-stage the uses Pipeline" to translate QTLs into breeding tools and knowledge.

• Pipelining began with two promising

• The apple Crop Reference Set has a complex pedigree structure across eight generations of cultivated germplasm. Together with program-specific Breeding Pedigree Sets for a total of ~1000 apple individuals, this germplasm represents the genomes of each of 65 important breeding parents at least 12X – for statistical power in determining effects of their alleles.

 Multi-generational flow of marker alleles, linkage blocks, and phenotypes for all or subsets of these pedigree connections Pedimap, visualized with are Pedigree-Based Analysis software.

118 126

216 226

individual name 226 246 genotypes (for Ma locus SSR markers AurGoldG CH05c06 126 118 & Hi04e04) 216 246 MAB in action

SNP genome scans

• The International RosBREED SNP Consortium apple 8K SNP array v1 comprises clusters of 4-10 SNPs spaced every 1 cM along the apple genome.

 The clustering strategy streamlines haplotyping and readily achieves our target of ≥1 heterozygous SNP per 5 cM along the chromosomes of any genome-scanned individual to maximize recombination tracking.

Genetic tests for apple fruit storability have assisted the Washington apple breeding program since 2010 to cull inferior seedlings prior to expensive field maintenance and evaluation. Most powerfully, DNA information on fruit texture and flavor is informing crossing decisions of U.S. apple breeders, delivering new knowledge to efficiently enrich the next generations of apples with the genetics for superior fruit quality.

available genetic tests, for fruit texture and flavor components (Ma locus and Md-Exp7). • Functional alleles were revealed for important breeding parents - such as Honeycrisp, Braeburn, Gala, and Fuji. Added benefits of screening hundreds of individuals with the three SSRs include verification Of pedigrees and identification of incorrect records, with some deductions of likely pedigrees.

•Once genome scan data is ready in late 2011, we anticipate Pedigree-Based Analysis will identify and characterize hundreds of promising QTLs.

• Each QTL will then enter the MAB Pipeline. • Those genetic tests with proven utility for individual breeding programs will be used to support parent and seedling selection decisions and actions.

MAB is a reality for apple, and is undergoing major advances. Major public apple breeding programs in Washington, Minnesota, and New York have united to establish a germplasm set comprehensively representing U.S. cultivated germplasm. Three years of large-scale phenotyping of the reference germplasm is underway. High-resolution SNP-based genome scans are providing an unprecedented view of cultivated apple functional genetic diversity. A new era in QTL discovery for valuable traits will arrive in late 2011 when genome scans are integrated with phenotypic performance using FlexQTL[™] software. In the meantime, promising genetic tests for fruit texture and flavor were fast-

Funding for RosBREED: Enabling marker-assisted breeding in Rosaceae is provided by the Specialty Crop Research Initiative Competitive Grant 2009-51181-05808 of the USDA's National Institute of Food and Agriculture.

