ROSBREED

Enabling marker-assisted breeding in Rosaceae

RosBREED Facilitates Peach Genetic Improvement via Marker-Assisted Breeding

Ksenija Gasic¹, John Clark², Tom Gradziel³, David Byrne⁴, Carlos Crisosto⁵, Terrence J. Frett¹, Paul J. Sandefur², Tim Hartmann⁴, Jonathan Fresnedo Ramirez³, Nahla Bassil⁶, Gregory Reighard¹, Cameron Peace⁷ and Amy lezzoni⁸

¹Clemson Univ., Clemson, SC 29634 USA ²Univ. of Arkansas, Fayetteville, AR 72701 USA ³Univ. of California - Davis, Davis, CA 95616 USA

ZinDai

ChineseCling

EarlyCrawford

F_JHHale

Quetta

Lippiatt

JulyElberta

F_EarlySunGrand

Lola

F_Arp_Beauty

LukensHoney

Strawberry

Compact Titrosampler

0000000

⁴Texas A&M Univ., College Station, TX 77843 USA ⁵Univ. of California - Davis, Parlier, CA 93648 USA ⁶USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR 97330 ⁷Washington State University, Pullman, WA 99164. USA ⁸Michigan State University, East Lansing, MI 48824, USA

The RosBREED project and peach genetic improvement

New cultivar development for peach in the U.S. can be divided into two types according to usage of fruit: fresh market and processing market. Objectives common to all peach breeding programs include improving and maintaining fruit quality (flavor, firmness, and appearance), productivity, size, and extending the season. These trait targets are complemented with emphases on ease of processing, disease and pest resistance, a greater diversity of fruit types, and adaptation to low-chill zones in individual programs. Despite being one of the best characterized Rosaceae crops, with genomic resources that include a whole genome sequence, a reference genetic map, EST libraries, and a growing list of marker-locus-trait associations, application of these resources in peach breeding is still limited. The RosBREED project (www.rosbreed.org) aims to bridge this chasm by providing markers and simplified technologies to enable peach marker-assisted breeding (MAB) for fruit quality and other critical traits.

Performance evaluation

Standardized phenotyping protocols for peach fruit quality evaluation (<u>www.rosbreed.org/resources/fruit-</u> <u>evaluation</u>) were collaboratively developed.
Performance evaluation began in 2010 for 13 fruit quality and 3 productivity traits at multiple, nation-wide breeding locations.

Germplasm

 The peach Crop Reference Set has a very complex structure, for which pedigree records stretch across eighteen generations!
 Together with program-specific Breeding Pedigree Sets for a total of ~1000 peach individuals, this germplasm represents the genomes of important breeding parents

 Pedimap software is used to visualize flow of marker alleles, linkage blocks, and phenotypes across these pedigree connections, and has revealed unrealized fractions of shared genomes.

• High-resolution S with an **9K array** w

SNP genome scans

High-resolution SNP-based genome scanning capability with an 9K array was developed for peach.
SNPs are evenly spread over the genome to readily track recombination events in breeding germplasm.
Genome scanning of ~1000 peach accessions underway, for use in QTL discovery via the PBA approach.
Additional uses: pedigree relationships are being resolved, and some highly saturated linkage maps developed.

			ЗС_Рорв_1
dDiamond	X	CrimsonLady X BY02p4019	SC_PopB_1
/	– ر 0.0	SNP_IGA_885070 SNP_IGA_885430	SC_PopB_1
	2.1	SNP_IGA_884527 SNP_IGA_884755	SC_PopB_1
		/ SNP_IGA_883524 SNP_IGA_882680	SC_PopB_1
	4.2 ح	SNP_IGA_882788 SNP_IGA_883625 SNP_IGA_884078 SNP_IGA_883429	SC_PopB_1
		SNP_IGA_884153 SNP_IGA_881804 SNP_IGA_882454	SC_PopB_1
	ł	SNP_IGA_881154 SNP_IGA_880789	SC_PopB_1
	6.3 [/]	SNP_IGA_881509 SNP_IGA_880641 SNP_IGA_881135 SNP_IGA_881173	SC_PopB_1
		SNP_IGA_882091 SNP_IGA_881815 SNP_IGA_881120	SC_PopB_1
	8.4	SNP_IGA_880548 SNP_IGA_880355	SC_PopB_1
	12.7	SNP_IGA_874263 SNP_IGA_873803	SC_PopB_1
	13.1 -// 14.7 -//	SNP_IGA_873743 SNP_IGA_878044 SNP_IGA_875889 SNP_IGA_875826	SC_PopB_1
	15.6	SNP_IGA_873055	SC_PopB_1
		SNP_IGA_862034 SNP_IGA_859602	
	22.2	SNP_IGA_862006	
	22.3	SNP_IGA_860069 SNP_IGA_859441	

SNP IGA 857951 SNP IGA 85545

MAB in action

Genetic tests for promising trait targets were recently fast-tracked through RosBREED's "MAB Pipeline". Imminently, DNA information on fruit type (melting vs. non-softening vs. non-melting; freestone vs. clingstone) will inform crossing decisions of U.S. peach breeders, enabling more efficient breeding and development of the next generations of peaches destined for fresh market or canning.

SNP_IGA_135137

(

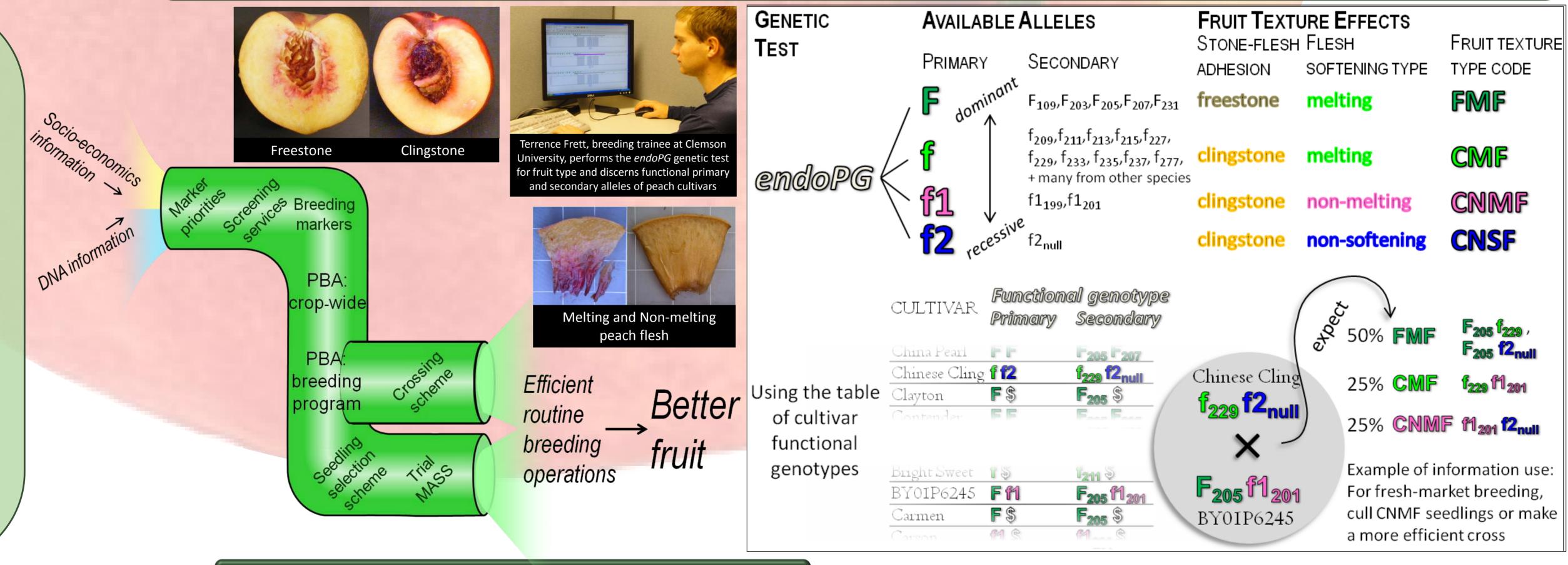
242

KimxJulyElberta

X _____ FV15_48

Springtime

552


SunGrand

Genetic tests for breeding

Peach is model genome for the Rosaceae family.
Has an excellent whole genome sequence, a reference genetic map, and bin set available.
Many fruit quality QTLs have been detected and mapped in peach but MAB has yet to be routinely implemented in U.S. peach breeding programs.
The endoPG genetic test facilitated identification of incorrect records, validation of phenotypic data, and provided valuable information for crossing decisions in 2012.

• Genome-wide SNP data will facilitate **Pedigree Based Analysis**.

 FlexQTL[™] software will enable detection of QTLs associated with fruit quality traits, with direct validation in breeding germplasm to facilitate rapid integration of new DNA information into breeding.

CONCLUSIONS

Four public peach breeding programs in California, Texas, South Carolina, and Arkansas, representing a range of breeding objectives, have established a comprehensive reference germplasm set representing important breeding parents, containing about 500 popular cultivars, ancestors, breeding selections, and breeding populations. Three years of phenotyping this germplasm for more than 20 traits is underway. High-resolution SNP-based genome scans with more than 3.5 million data points provide genome-wide tags to determine chromosome regions containing genetic variation that control complex traits such as flavor in peach. The promise of MAB in peach is finally being realized through the established RosBREED MAB Pipeline and information database ("Breeders' Toolbox")

now being demonstrated for routine operation by the four U.S. public breeding programs. The chasm is being bridged and genomics-age promise of more efficient breeding in peach is now a reality.

Funding for RosBREED: Enabling marker-assisted breeding in Rosaceae is provided by the Specialty Crop Research Initiative Competitive Grant 2009-51181-05808 of the USDA's National Institute of Food and Agriculture.

USDA United States Department of Agriculture National Institute of Food and Agriculture